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Abstract

We study the bandwidths in free electron lasers(FELs) under different circumstances; For
weakly saturated FELs in storage rings, the bandwidth is given by the formula derived in the super
mode theory, while it is given by the Fourier tranform of the electron pulse length in the strongly
saturated FELs in linacs. The limiting bandwidth for the case of a DC beam is given by a
Schawlow-Townes formula, but the approach to the limit is very slow.

1.  Introduction

There has been some confusion on the achievable bandwidth in free electron laser (FEL)
oscillators[1]. One often hears about the transform limited bandwidth, which is the bandwidth
limited by the Fourier transform of the electron beam. In the supermode theory, the bandwidth is
given by a geometric average of the gain bandwidth and the transform limited bandwidth [2], [3],
[4]. Extension of the Schawlow-Townes limit [5] to FEL has also been discussed [6]. In this
paper, we study the evolution of the spectral and the temporal profile in FELs in terms of a simple
but physically reasonable model introduced in section 2, and determine the circumstances under
which different bandwidth formula are applicable.

We show in section 3 that the bandwidth of the optical pulse narrows as 1/4m as the
number of the passes n of the electron beam through the optical cavity increases [7]. The temporal
width also narrows in a similar fashion in the beginning of the intensity build-up. This, together
with the fact that the product of the temporal and the spectral width must be greater than a minimum
value, leads to the limiting bandwidth predicted by the super mode theory. The supermode theory
is valid for a weakly saturated system such as storage ring based FELs, where the gain can be
regarded as a constant.

For linac based FELs discussed in section 4, however, the optical power evolves to a level
where the reduction of gain due to high intensity,i.e., the gain saturation, becomes important.
Observing that the gain saturation is homogeneous in frequency but inhomogeneous in time, we
derive that the limiting bandwidth is then given by the Fourier transform of the electron pulse
length. In this discussion, we find it necessary to distinguish between the intensity saturation from
the " spectrum sauration"; The time to reach the limiting spectrum is typically longer than the time
to reach the intensity saturation.



For the case of a DC electron beam, the narrowing of the bandwidth continues until it
reaches a small value determined by the spontaneous radiation. However, as the bandwidth
narrowing is slow, 1M , it takes a long time to reach this value, typically a day or longer. This is
discussed in section 5.

2.  Equation for FEL Evolution

We consider the evolution of the optical signal in a FEL cavity. The increase of the optical
power during the nth passage of the electron beam consists of two terms, that due to the
amplification of the power already present and that due to the spontaneous radiation. Let
dP(®,7;n)dw be the T-dependent spectral density of the optical power at the beginning of the nth
passage, and dS(w,t)/dw a similar quantity due to the spontaneous radiation emitted in one pass.
Here, @ is the frequency and ct (c = speed of light) is the distance from the pulse center.  Notice
that o and 7T are conjugate variables under Fourier transformation. Thus, the quantity

dP(w,t;n)/dw should be, strictly speaking, understood as the Wigner distribution [8]. However, it
can be loosely interpreted as the spectral density evaluated at T, when the following inequality is

valid :
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Here 0, and 0 are the rms values of the spectral and the temporal widths, as follows:
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Here, ) is the central frequency.

With this interpretation, a simple model for the evolution of the optical power may be
written as follows:

dP(w,T; dP{w,T;



Here g is the gain parameter and o is the total loss per round trip.

To solve the evolution equation, we need to specify the behavior of the gain function
g(w,T;n). We consider the cases of storage rings and linacs separately.

3. S le Bandwidth in S Rine Based FEL

In storage ring based FELs, the saturation is due to the induced energy spread and bunch
lengthening of the electron beams that accumulate from pass to pass. The power level at saturation
is determined by a balance between the inhomogeneous gain reduction and radiation damping, and
given by the Renieri limit [9]. It is well below the level at which particle trapping in the
ponderomotive potential becomes significant. Therefore, we may assume that the gain is
independent of the optical power and n, as follows:

g(®,u;n) = goF()T(1) . ©)

The function F(w) describes the frequency dependence of the gain. For frequencies near the
resonance frequency @y,
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In the above, 0, is the gain bandwidth, given approximately by
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where N is the number of the undulator periods.

The function T(7) describes the temporal profile of the electron pulse: For 1 near the pulse

center, it is of the form
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Here o% is the rms bunch length of the electron pulse in time.

With the gain function specified by Eq. (5), Eq. (4) can be solved easily. The result is:

dP(o,7;n) _ Exp[(goF(w)T(1)-cnl-1 4§
do goF(w)T(1)-c do ©)

In view of Egs. (6) and (8), Eq. (9) implies that the spectral width and the temporal width of the
optical pulse (defined by Egs. (2) and (3)) become narrower as the number of passes n increases as

follows:
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The simultaneous narrowing in the spectral width Eq. (10) and in the temporal width, Eq.
(11), must stop to be consistent with the inequality (2). This occurs for
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The limiting bandwidth in this case is

So_4/ 1 _A (13)
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This is a geometric average of the gain bandwidth and the transform limited bandwidth discussed
in the following section. Equation (13) was first derived in the context of the super mode
theory[2]. The simultaneous narrowing of the spectral and the temporal widths was discussed in
Ref. [3].

Equation (13) appears to be consistent with the results of FEL experiments in storage rings
[31, [4] (with a suitable replacement of 1/2N by a factor appropriate for optical klystrons).



In linac driven FELs, the optical pulse interacts with a fresh electron bunch in each round
trip. The particle trapping in the ponderomotive potential becomes significant, and the FEL
intensity reaches saturation when the electron motion in the undulator corresponds to about one
half of the synchrontron oscillation period. In this case, it is necessary to take into account the gain
reduction caused by high intensity effect. A simple way to model the gain reduction is to replace

Eq. (5) by:

goF(0)T(1)

B P (14)

P(t;n) = f __dP(g)(,:;n) do . (15)

In Eq. (14), P is a parameter which sets the scale of the saturation intensity; it is about the
power at which electrons undergo a one-half period synchrotron oscillation in passing through the
undulator. According to Eq. (14), the gain reduction for a given frequency ® and temporal
position 1 is determined by a sum of the optical intensities over all ®, but evaluated at the same 7.
Thus, Eq. (14) is a model for a gain saturation which is homogeneous in @ but inhomogeneous in
7 [10]. The gain saturation is homogeneous in ® because all frequency components which lie
within the gain bandwidth should contribute equally to the saturation. [Strictly speaking, the

integral in Eq. (15) should be replaced by an integral which extends to frequency values separated
by a gain bandwidth from w. However, we are mainly interested in the cases for which the

spectral width of the function dP/dw is much narrower than the gain bandwidth, in which case
Eq. (15) is a good approximation]. On the other hand, the saturation is inhomogeneous in 7 since
optical intensities at two T's separated by more than the slippage distance NA/c should evolve
independently [11]. Here we are assuming, as as almost always the case, that the pulse is much
longer than the slippage distance.

The evolution of the optical pulse profiles in linac driven FELs can therefore be determined
by explicitly solving Eqgs. (4) and (14). However, the main feature of the spectral property can be
determined qualitatively as follows:

In the beginning of the FEL evolution the ratio P(t;n)/P is small so that Eq. (14) reduces to
Eq. (5). Therefore, the spectral width and the temporal width will both start to narrow as



described by Eq. (10) and Eq. (11), respectively. As the optical power increases, the gain
becomes smaller due to the intensity dependent effect. The saturation takes place first at =0 where
the initial gain is highest. However, the optical intensities at T=0 will keep increasing until they
reach their own saturation level. Thus, the temporal width of the optical pulse, after initial
narrowing, will broaden as the optical intensity approaches the saturation level, and eventually
becomes the same as the width of the electron beam.

The limiting bandwidth in this case is therefore obtained from Eq. (2) by replacing o, by
of,
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Equation (16) is often referred to as the Fourier-transform-of-the-electron-pulse limited, or simply
the transform limited bandwidth. In terms of the full-width-at-the-half-maximum (FWHM)
quantities, Eq. (16) becomes
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Equation (16) or (17) is consistent with the result of the FEL experiments in linacs [12].

For explicit solution of Eq.(14), we proceed as follows: We integrate Eq. (4) with respect
to . In doing so, we assume that the width of the optical spectrm is much narrower than the gain

bandwidth so that

dw w
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The result of integration is

dn - v , (19)



where AS =f dw(dS/dw) is the total spontaneous power,

80 . o1y = goT(r) .

g(tn) =
14P(t;n)/P (20)

In solving Egs. (19) and (20), we introduce the dimensionless parameter
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which is a very small number, typically 108 or less. If go(T) < 0-¢, the FEL is below threshold,
and P(n,7) is of the order AS for all n. On the other hand, if g,(1) > a-€, P(n,T) evolves to a

saturated value
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The behavior for the limiting cases of n are
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In the above, ng is the number of passes characterizing the saturation of the power; The

optical power P(T;n) is practically constant at Pg(t) for n > ng. The quantity ng is given by
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From Eq. (25), we see that the temporal width begins to narrow at small n. However, at
saturation, the temporal profile is, assuming that go>>a., given by go(t) = goT(t) from Eq. (22),
and is the same as that of the electron pulse. The limiting bandwidth is then given by Eq. (16).

Having determined the function P(t;n), and therefore g(t;n), Eq. (4) can be integrated
straightforwardly. The behavior of dP/dw at large n is approximately the same as that of the

solution of the homogeneous equation

dP(w,t;n) - dP((D!t;O)eG(T;n)F(m)-(m
dw dw ’ (28)

where

G(T;n)=[ g(t;n)dn .
0 (29)

The spectral distribution given by Eq. (28) is a Gaussian shape, with the rms relative width
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We can derive from Eqgs (19), (25) and (26) that

G(t;n) ~ gon for n<<ng , (31)

~on for n>>ng .

We have therefore

(32)
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The bandwidth will keep narrowing as described by Eq. (32) and (33) until it reaches the
Fourier transform (of the electron beam) limit given by Eq. (16). Typically, the bandwidth after ng
passes (~ on/¥gons) is still broader than the Fourier transform limit. Therefore the spectrum of
optical pulses in a FEL cavity keeps evolving after the intensity reached saturation at around n=ns,.
From Egs. (16) and (33), the number of passes n, required to reach "spectrum" saturation is
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5. Intrinsic Limit Due to Noise

The bandwidths formula, Egs. (13) and (16), are applicable when the electron pulse length
is finite. We now consider the case of a DC electron beam. Thus, we delete the T-dependence in
Eq. (4), and replace g(w,T;n) by g(n)F(w). The steady state solution is obtained by setting the
R.H.S. of Eq. (4) to zero;

lim ®@n) _dP(@) 1 ds

dw dw o-gF(w) dw
e gF(w) 35)

In the above, we have deleted the T dependence because the solution is independent of T. We
consider a small neighborhood of ® near @y, so that the expansion Eq. (6) is valid. In Eq. (35), g
is the limiting value of g(n) for a large n which must be very nearly equal to o.. Thus, we write

§=“(1'%)’ (36)

where 8<<1. The 82 term enters with a negative sign so that Eq. (35) is positive definite for all w.
Inserting Eq. (36) to (35), we obtain

dPs _ 1 ds
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By integrating Eq. (37) (neglecting the w-dependence of dS/dw), we obtain
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where Pgen = 0Ps is the generated power. Thus, the limiting distribution is a Lorentzian with

Aw| =2non AS_
® FWHM Pgen (39)

Equations (37) and (39) are similar to the Schawlow-Townes formula [5] except for the
replacement of the bandwidth of the optical cavity by the gain bandwidth oN. Typically, the
limiting bandwidth is smaller at least by a factor 10*6 compared to oN. To reach this bandwidth
via the gain narrowing described by Eq. (33), it will take at least 1012 passes, which corresponds
to about one day with a 10-m optical cavity. A single mode operation of an FEL with a bandwidth
similar in magnitude to that given by Eq. (39) has been reported [13]. However, the result is
controversial experimentally and unlikely theoretically because of the slow approach to the limiting
bandwidth. The approach to the frequency saturation in long pulse FELs was also studied in
ref. [14], where the statistical effect of the spontaneous radiation is included.
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Errata:

There are two typographical errors in Page 7 of the paper "The Evolution and Limits of

Spectral Bandwidth in Free Electron Lasers".

(1) In the sentence above Eq. (22), P(n,t) should be replaced by P(t;n).

(ii) Equation (23) should read
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(Bf0)- B+l (Pr)f]




